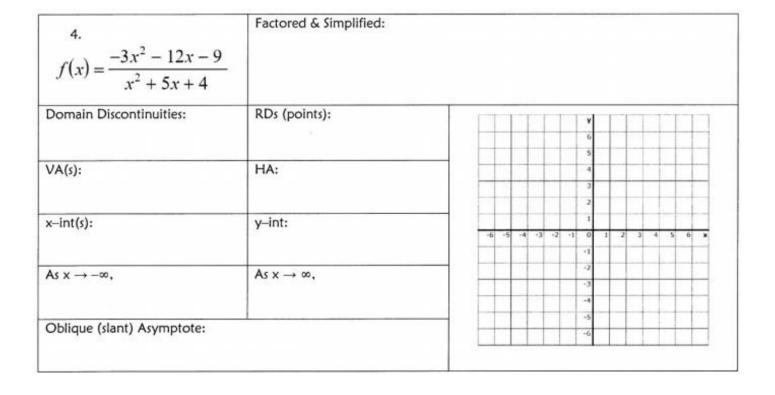
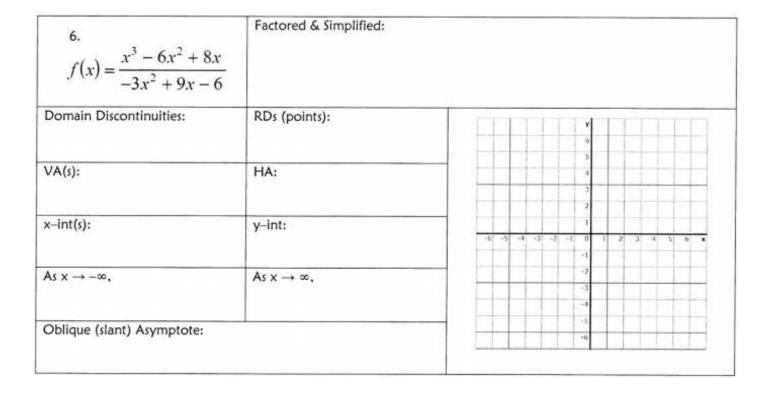
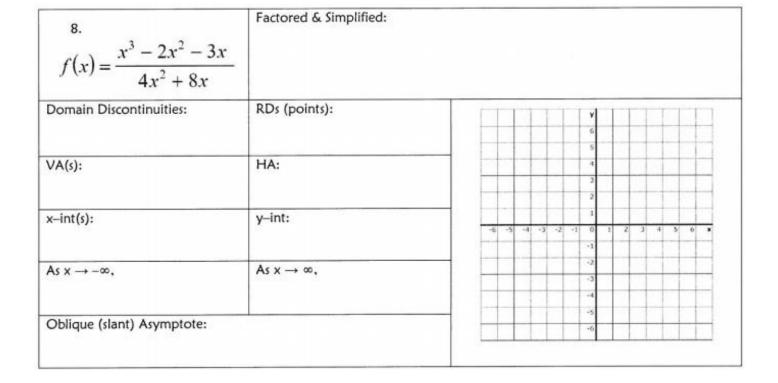

Graphing Rational Functions


PreCalculus

You MUST show work on a separate sheet of paper. Record your findings here.


1. $f(x) = \frac{2x - 6}{x^2 - 3x}$	Factored & Simplified:		
Domain Discontinuities:	RDs (points):		y 6
VA(s):	HA:		5 4 7
x-int(s):	y–int:	-6 -5 -4 -3 -2 -1	2 1 0 1 2 3 4 5 6 x
As $x \to -\infty$,	As x → ∞,		-1
Oblique (slant) Asymptote:			-4
			6


$f(x) = \frac{x}{-x-2}$	Factored & Simplified:															
Domain Discontinuities:	RDs (points):	TE	Ī	1	1				6							
VA(s):	HA:								3							
x-int(s):	y–int:		0	-5	-4	-3	-2	-1	0 -1	1	2	,	4	5	6	×
As $x \to -\infty$,	As $x \to \infty$,								-2 -3							
Oblique (slant) Asymptote:									+6							-

5. $f(x) = \frac{x^2 + x}{-2x^2 - 2x + 12}$	Factored & Simplified:														
Domain Discontinuities:	RDs (points):	I			-	1	I	¥							1
VA(s):	HA:							4 3							
x—int(s):	y–int:	6	5	4	-3	-7	-1	1 0	1	2	3	4	5	6	
As $x \to -\infty$,	As $x \to \infty$,		-	-		-	-	-2 -3							
Oblique (slant) Asymptote:			1	-			1	+3 +6							

7. $f(x) = \frac{x^3 - 16x}{-3x^2 + 3x + 1}$	Factored & Simplified:													
Domain Discontinuities:	RDs (points):		-	1	1	1	1	v .	-					
VA(s):	HA:					ļ		4						
x-int(s):	y-int:	-6	-5	4	-3	.2	1	1 0	1 2	3	4	S	6	×
As $x \to -\infty$,	As $x \to \infty$,							2						
Oblique (slant) Asymptote:								5						

